Source: Science Daily
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole. It went out with a whimper instead of a bang.

Artist's impression. In the failed supernova of a red supergiant, the envelope of the star is ejected and expands, producing a cold, red transient source surrounding the newly formed black hole, as illustrated by the expanding shell (left to right). Some residual material may fall onto the black hole, as illustrated by the stream and the disk, potentially powering some optical and infrared emissions years after the collapse.
Credit: NASA, ESA, P. Jeffries (STScI)
-----
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.
It went out with a whimper instead of a bang.
The star, which was 25 times as massive as our sun, should have exploded in a very bright supernova. Instead, it fizzled out -- and then left behind a black hole.
"Massive fails" like this one in a nearby galaxy could explain why astronomers rarely see supernovae from the most massive stars, said Christopher Kochanek, professor of astronomy at The Ohio State University and the Ohio Eminent Scholar in Observational Cosmology.
As many as 30 percent of such stars, it seems, may quietly collapse into black holes -- no supernova required.
"The typical view is that a star can form a black hole only after it goes supernova," Kochanek explained. "If a star can fall short of a supernova and still make a black hole, that would help to explain why we don't see supernovae from the most massive stars."
more...
Comments rated to be Good Answers:
Comments rated to be "almost" Good Answers: